top of page

Publications

Faculty career @ Emory University

Shekhar et al, 2019.jpg
Shekhar%20and%20Carlier%2C%202017_edited
Carlier and Shekhar, 2017.png
Shekhat, 2017.png
Shekhar%2520et%2520al%252C%25202017_edit
Pernier et al, 2016.png
Shekhar et al, 2016.png
Shekhar et al, 2016.jpg
Shekhar%20et%20al%2C%202015_edited.jpg
Carlier%20et%20al%2C%202015_edited.jpg
Shekhar et al, 2014.png
Pereira%20et%20al%2C%202014_edited.jpg
26. Multicomponent rendezvous of cofilin, profilin and twinfilin at the actin filament barbed end

Ankita, Choubey S., and Shekhar S.


Preprint
25. Cyclase-associated protein is a pro-formin anti-capping processive depolymerase of actin barbed and pointed ends

Towsif E and Shekhar S.


Preprint (2023)
24. Mechanisms of actin disassembly and turnover

Goode B.L., Eskin J. and Shekhar S.


Journal of Cell Biology (2023)
23. Cooperative hydrodynamics accompany multicellular-like colonial organization in the unicellular ciliate Stentor

Shekhar S., Guo H., Sean P. Colin SP, Marshall W., Kanso E., Costello J.H. 


Preprint (2023)
22. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein

Ulrichs H., Gaska I.Shekhar S. 


Nature Communications (2023)
21. Pointed-end processive elongation of actin filaments by Vibrio effectors VopF and VopL

Kudryashova E., Ankita, Ulrichs H., Shekhar S., Kudryashov D.S. 


Science Advances (2022)
20. Single-molecule imaging of IQGAP1 regulating actin filament dynamics in real time

Hoeprich G.H., Sinclair A.N., Shekhar S. and Goode B.L. 


Molecular Biology of the Cell (2021)
19. Twinfilin1 controls lamellipodial protrusive activity and actin turnover during vertebrate gastrulation.

Devitt C.C, Lee C., Cox R.M., Papoulas O., Alvarado J., Shekhar S., Marcotte E.M., Wallingford J.B.

Journal of Cell Science (2021)
Postdoctoral and graduate research 
18. Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization.

Shekhar S., Hoeprich G.H., Gelles J and Goode B.L.

Journal of Cell Biology (2020) [PDF]
17. Genetically-inspired in vitro reconstitution of S. cerevisiae actin cables from seven purified proteins.

Pollard L.W., Garabedian M.V., Alioto S.L., Shekhar S. and Goode B.L.

Molecular Biology of the Cell (2020) [PDF]
16. Synergy between Cyclase-associated protein and Cofilin accelerates actin filament depolymerization by two orders of magnitude.

Shekhar S, Chung J, Kondev J, Gelles J and Goode B. L.

 
Nature Communications (2019) [PDF]
15.  Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth.
 
Shekhar S.  and Carlier M-F.

Current Biology (2017) [PDF]
14.  Global treadmilling coordinates actin turnover and controls the size of actin networks.
 
Carlier M-F. and Shekhar S.

Nature Reviews Molecular Cell Biology (2017) [PDF]
13.  Microfluidics-Assisted TIRF Imaging to Study Single Actin Filament Dynamics.

Shekhar S.

Current Protocols in Cell Biology (2017) [PDF]
12. Intracellular manipulation of phagosomes using magnetic tweezers.

Shekhar S., Subramaniam V., & Kanger J.S.

Methods in Molecular Biology (2017) [PDF]
11. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching and motility.

Pernier J.*, Shekhar S*., Jegou A, Guichard B., Carlier M-F.

Developmental Cell (2016) [PDF]
10. Barbed‑end regulators at a Glance.

Shekhar S., Pernier J. and Carlier M-F.

Journal of Cell Science (2016) [PDF]
9. Kinetic studies provide key insights into regulation of actin-based motility.
 
Shekhar S. and Carlier M-F.

Molecular Biology of the Cell (2016) [PDF]
8. Formin and Capping Protein together embrace the actin filament in a “ménage à trois”

Shekhar S., Kerleau M, Kuhn S., Pernier J., Romet-Lemonne G., Jegou A., Carlier M.-F.

Nature Communications (2015) [PDF]
7. Control of polarized assembly of actin filaments in cell motility.

Carlier M.-F., Pernier J., Montaville P., Shekhar S., Kühn S.

Cellular and Molecular Life Sciences (2015) [PDF]
6. Quantitative biology: where modern biology meets physical sciences.

Shekhar S., Zhu L., Mazutis L., Sgro A.E., Fai T.G., Podolski M.

Molecular Biology of the Cell (2014) [PDF]
5. Plasticity of the MAPK Signaling Network in Response to Mechanical Stress.

Pereira A., Tudor C., Pouille P., Shekhar S., Kanger J.S., Subramaniam V., Martin-Blanco E.

PLoS ONE (2014) [PDF]
4. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations.
 
Van den Dries K., Meddens M., de Keijzer S., Shekhar S., Subramaniam V., Figdor C.G. and Cambi A.

Nature Communications (2013) [PDF]
3. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation.

Shekhar S., Figdor C.G., Cambi A., Subramaniam V., & Kanger J.S.

Biophysical Journal (2012) [PDF]
2. Spatially resolved local intracellular chemical sensing using magnetic particles.

Shekhar S., Klaver A., Figdor C.G., Subramaniam V., & Kanger J.S.

Sensors and Actuators B: Chemical (2013) [PDF]
1. Actin-based propulsion of functionalized hard versus fluid spherical objects.

Delatour V., Shekhar S., Reymann A-C., Didry D., Lê K.H.D, Romet-Lemonne G., Helfer E., Carlier M-F.

New Journal of Physics (2008) [PDF]
Shekhar et al, 2010.tif
Van%20den%20Dries%20et%20al%2C%202013_ed
Shekhar%2520et%2520al%253B%25202012_edit
Delatour%20et%20al%3B%202008_edited.png
Formin-Barbed end.png
Devitt et al.jpg
Heoprich et al.jpg
image_2023-01-16_213852479.png
image_2023-07-16_125916073.png
Figure 1_edited.jpg
image.png
image_2024-03-02_124255777.png
image_2024-03-02_124505456.png
bottom of page