18. Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization.

Shekhar S., Hoeprich G.H., Gelles J and Goode B.L.

Journal of Cell Biology (2020) [PDF]
17. Genetically-inspired in vitro reconstitution of S. cerevisiae actin cables from seven purified proteins.

Pollard L.W., Garabedian M.V., Alioto S.L., Shekhar S. and Goode B.L.

Molecular Biology of the Cell (2020) [PDF]
16. Synergy between Cyclase-associated protein and Cofilin accelerates actin filament depolymerization by two orders of magnitude.

Shekhar S, Chung J, Kondev J, Gelles J and Goode B. L.

Nature Communications (2019) [PDF]
15.  Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth.
Shekhar S.  and Carlier M-F.
Current Biology (2017) [PDF]
14.  Global treadmilling coordinates actin turnover and controls the size of actin networks.
Carlier M-F. and Shekhar S.
Nature Reviews Molecular Cell Biology (2017) [PDF]
13.  Microfluidics-Assisted TIRF Imaging to Study Single Actin Filament Dynamics.
Shekhar S.
Current Protocols in Cell Biology (2017) [PDF]
12. Intracellular manipulation of phagosomes using magnetic tweezers.
Shekhar S., Subramaniam V., & Kanger J.S.
Methods in Molecular Biology (2017) [PDF]
11. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching and motility.
Pernier J.*, Shekhar S*., Jegou A, Guichard B., Carlier M-F.
Developmental Cell (2016) [PDF]
10. Barbed‑end regulators at a Glance.
Shekhar S., Pernier J. and Carlier M-F.
Journal of Cell Science (2016) [PDF]
9. Kinetic studies provide key insights into regulation of actin-based motility.
Shekhar S. and Carlier M-F.
Molecular Biology of the Cell (2016) [PDF]
8. Formin and Capping Protein together embrace the actin filament in a “ménage à trois”
Shekhar S., Kerleau M, Kuhn S., Pernier J., Romet-Lemonne G., Jegou A., Carlier M.-F.
Nature Communications (2015) [PDF]
7. Control of polarized assembly of actin filaments in cell motility.
Carlier M.-F., Pernier J., Montaville P., Shekhar S., Kühn S.
Cellular and Molecular Life Sciences (2015) [PDF]
6. Quantitative biology: where modern biology meets physical sciences.
Shekhar S., Zhu L., Mazutis L., Sgro A.E., Fai T.G., Podolski M.
Molecular Biology of the Cell (2014) [PDF]
5. Plasticity of the MAPK Signaling Network in Response to Mechanical Stress.
Pereira A., Tudor C., Pouille P., Shekhar S., Kanger J.S., Subramaniam V., Martin-Blanco E.
PLoS ONE (2014) [PDF]
4. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations.
Van den Dries K., Meddens M., de Keijzer S., Shekhar S., Subramaniam V., Figdor C.G. and Cambi A.
Nature Communications (2013) [PDF]
3. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation.
Shekhar S., Figdor C.G., Cambi A., Subramaniam V., & Kanger J.S.
Biophysical Journal (2012) [PDF]
2. Spatially resolved local intracellular chemical sensing using magnetic particles.
Shekhar S., Klaver A., Figdor C.G., Subramaniam V., & Kanger J.S.
Sensors and Actuators B: Chemical (2013) [PDF]
1. Actin-based propulsion of functionalized hard versus fluid spherical objects.
Delatour V., Shekhar S., Reymann A-C., Didry D., Lê K.H.D, Romet-Lemonne G., Helfer E., Carlier M-F.
New Journal of Physics (2008) [PDF]

© 2020 by Shashank Shekhar.